lunes, 4 de octubre de 2010

Energía Potencial en procesos disipativos.

Energía potencial
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Los carros de una montaña rusa alcanzan su máxima energía potencial gravitacional en la parte más alta del recorrido. Al descender, ésta es convertida en energía cinética, la que llega a ser máxima en el fondo de la trayectoria (y la energía potencial mínima). Luego, al volver a elevarse debido a la inercia del movimiento, el traspaso de energías se invierte. Si se asume una fricción insignificante, la energía total del sistema permanece constante.En un sistema físico, la energía potencial es energía que mide la capacidad que tiene dicho sistema para realizar trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar.

Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

Energía potencial asociada a campos de fuerzas
La energía potencial puede definirse solamente cuando la fuerza es conservativa. Si las fuerzas que actúan sobre un cuerpo son "no conservativas" entonces no se puede definir la energía potencial, como se verá a continuación. Una fuerza es conservativa cuando se cumple alguna de las siguientes propiedades:

El trabajo realizado por la fuerza entre dos puntos es independiente del camino recorrido.
El trabajo realizado por la fuerza para cualquier camino cerrado es nulo.
Cuando el rotor de la fuerza es cero.

La ley de la conservación de la energía constituye el primer principio de la termodinámica y afirma que la cantidad total de energía en cualquier sistema aislado permanece invariable con el tiempo, aunque esta se puede transformar en otro tipo de energía, la energía no puede crearse ni destruirse, si no que sólo se pude cambiar de una forma a otra.
Sin embargo la segunda ley de la termodinámica expresa que “La cantidad de entropía (magnitud que mide la parte de la energía que no puede utilizarse para producir un trabajo) de cualquier sistema aislado termodinámicamente se incrementa con el tiempo”. Cuando una parte de un sistema cerrado interacciona con otra parte, la energía se divide hasta alcanzar un equilibrio térmico.
Se puede deducir que la energía no se conserva, si no que es transformada en otra, esta energía puede llegar a ser térmica, eléctrica, química, nuclear, entre otras.
Si la energía de un sistema es degradada en forma de calor se dice que es disipativo.
Los procesos disipativos, son aquellos que transforman la energía mecánica en energía térmica, por ejemplo: el rozamiento entre dos superficies sólidas, la fricción viscosa en el interior de un fluido, la resistencia eléctrica, entre otras.
El rozamiento o fricción, se divide en dos tipos, la fricción estática (FE), es una resistencia entre dos objetos que debe de ser superada para ponerse en movimiento; y la fricción dinámica (FD), es una fuerza de magnitud considerada constante, que se opone al movimiento cuando ya ha comenzado. No existe una idea clara de la diferencia que existe entre el rozamiento dinámico y el estático, pero se tiende a pensar que el estático es algo mayor que el dinámico, porque al permanecer en reposo ambas superficies pueden aparecer enlaces iónicos, o incluso microsoldaduras entre las superficies, factores que desaparecen en estado de movimiento.

1 comentario:

  1. Anita, Saludos, queda registrada la indagación bibliografica, favor de incluir los experimentos con fotos, gracias.
    Prof. Agustín

    ResponderEliminar